
Abstract. The interaction between multipoles is not
isotropic even in cubic systems. This results in the
introduction of geometric reduction factors in the
calculation of energy-transfer rates in crystals. We
derive these reduction factors for the cases of dipole±
dipole, dipole±quadrupole, and quadrupole±quadrupole
couplings and present a general procedure for their
derivation in other cases. For the dipole±dipole case the
geometric factor is independent of the distribution of
the acceptor species, but for higher-order couplings, a
signi®cant angular dependence is found.
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1 Introduction

In a recent series of papers we derived a discrete shell
model for energy transfer and applied this model to the
luminescence decay curves of excited electronic states of
rare-earth ions in the cubic hexachloroelpasolite crystal
Cs2NaLnCl6[1±3]. In the systems considered in these
papers the dominant mechanism of energy transfer is
dipole±dipole coupling. Direct calculation using a Car-
tesian basis shows that, in this case, the energy-transfer
rate is independent of the precise angular distribution
of the acceptors around the donor although, of course,
it does depend on the number and distance of these
acceptors. In some cases we found experimentally that
the interaction between donors and acceptors was
apparently of shorter range than the Rÿ6dependence of
a dipole±dipole interaction and this led us to consider
the possibility of both higher-order couplings and the
e�ect of a nonisotropic dielectric shielding factor. To
consider these possibilities quantitatively it is necessary
to calculate the e�ect of the angular dependence of the

coupling of higher multipoles on the energy-transfer
rates. This paper describes a method for calculating
these quantities.

2 The shell model for energy transfer

In the presence of a single chemical type of optically
active acceptor for the donor excitation energy, the
energy-transfer processes are due to cross relaxation and
within the shell model the luminescence decay curves
following a d-function excitation pulse take the form [1]

I�t� � I�0� exp�ÿk0t�
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x is the mole fraction of the optically active ion, Rn is the
distance between the donor ion and an acceptor ion in
the nth shell determined by the crystal structure, k0 is the
intrinsic decay rate involving radiative and nonradiative
single-ion processes, and kCR is the cross-relaxation rate
from a donor ion to a single acceptor in the ®rst shell.
sp = 6, 8, or 10 for electric dipole vibronic±electric
dipole vibronic (EDV±EDV) or magnetic dipole±mag-
netic dipole (MD±MD), electric dipole vibronic±electric
quadrupole (EDV±EQ), and electric quadrupole±electric
quadrupole (EQ±EQ) interactions, respectively. The
index p distinguishes between di�erent coupling compo-
nents for a given value of s. In octahedral symmetry the
electric and magnetic dipole operators transform as the
irreducible representation (irrep) T1 and therefore only
a single component exists for dipole±dipole coupling.
The EQ operator transforms as the direct sum E � T2

and three (six) di�erent components occur for EDV±EQ
(EQ±EQ) coupling.

In our shell model we assume FoÈ rster±Dexter multi-
pole±multipole interaction among donor and acceptor
ions with the resonant cross-relaxation rate given by
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kCRn � 2p
�h

DA0 Ĥn

�� ��D0A
 ��� ��2Z fD0D�E�fAA0 �E� dE ; �2�

where the overlap integral contains normalized lineshape
functions of donor emission and acceptor absorption
transitions.

The donor±acceptor interaction Hamiltonian for
each shell may be expanded in terms of spherical har-
monics according to Carlson and Rushbrooke [6] as
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where en is the nonisotropic dielectric shielding factor.
D�k1�q1 �rD; #D;uD� and D�k2�q2 �rA; #A;uA� are the corre-
sponding Garstang tensor operators associated with the
transition multipoles of donor and acceptor transitions
and are given by [7]

D�k�q �r; #;u� � ÿerkC�k�q �#;u� ; �4�
where e is the electron charge and the C�k�q �#;u� are the
standard Racah tensor operators [8]. The geometric
tensor

T �k1�k2�
ÿ�q1�q2� � t�k1�k2�

ÿ�q1�q2�C
�k1�k2�
ÿ�q1�q2��Hn;Un� �5�

contains the angular dependence of the interaction
between the donor and an acceptor at a position (Rn,
Hn, Un), where Rn, Hn, and Un are the spherical polar
coordinates of the acceptor relative to the donor and

t�k1�k2�
ÿ�q1�q2� � �ÿ1�

k2�q1�q2
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� �1=2
:

�6�
The k1 � 0 and k2 � 0 term denotes the constant
monopolar term. The ®rst term in the expansion
contributing to the energy-transfer process comes from
the k1 � 1 and k2 � 1 term which contains the ED±ED
interaction for both ions, k1 � 1 and k2 � 2 corresponds
to an ED transition at the donor site accompanied by an
EQ transition at the acceptor, and k1 � k2 � 2 represents
the EQ±EQ interaction. Higher-order multipole±multi-
pole interaction is very unlikely to give rise to the
energy-transfer process and will therefore not be con-
sidered in this paper.

3 The geometric factor for multipole±multipole
interaction

For acceptors at distances Rn Eq. (2) may be summa-
rized as

kCRn �
X
s;p

Gsp
n

asp

Rsp
n
; �7�

where the summation is over all the individual energy-
transfer processes determined by the value of sp occur-
ring at a speci®c donor ion each with a coupling
parameter asp : Gsp

n is a geometric factor describing the
angular dependence of the interaction between the donor
transition multipole and the acceptor transition multi-
pole.

With the multipole±multipole interaction given in
Eq. (3) the perturbation matrix elements of Eq. (2) be-
come
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where the quantities t�k1�k2�
ÿ�q1�q2� are calculated using Eq. (6).

li
D0D is the ith component of the transition multipole

moment between the electronic states D0 and D of the
donor with a similar notation for the acceptor. The
geometric factor may then be de®ned as

Gsp
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1
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X
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where gD and gA are the degeneracies of the irreducible
representations involved in the multipolar interaction
such that li

D0D

�� ��2� lD0Dj j2��gD�ÿ1, etc. The multipole±
multipole interaction in Eq. (8) then becomes
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The basis functions for the irreducible representations
E, T1, and T2 of the octahedral point group used in our
calculations are taken from Ref. [9].

3.1 Dipole±dipole interaction

The electric dipole operator transforms as the irreducible
representation T1 of the octahedral point group which has
a threefold degeneracy and therefore the denominator
in Eq. (9) becomes 9. For dipole±dipole interaction,
k1 � k2 � 1 in Eq. (3) and the corresponding coupling

coe�cients t�2�ÿ�q1�q2� are given in Table 1. The geometric

reduction factors for dipole±dipole coupling are
independent of the shell number n and are calculated to
be 2/3.

3.2 Dipole±quadrupole interaction

Setting k1 � 1 and k2 � 2 in Eq. (3), the coupling co-
e�cients t�3�ÿ�q1�q2� take the values given in Table 2. Notice
that these quantities change their signs in the case of
quadrupole±dipole interaction. In octahedral symmetry
the EQ operator transforms as the direct sum of the
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irreps E and T2. Depending on the selection rules for
EQ transitions three di�erent components may add to
the dipole±quadrupole coupling, T1 ! E, T1 ! T2, and
T1 ! E � T2. The corresponding geometric factors are
given in Table 3 for dipole±quadrupole interaction
between the donor ion and acceptors in shells
n � 1ÿ 10. We note that in the ninth shell two types
of acceptors appear at a distance R9 � 2:121� a0, and
occur at di�erent angles relative to the donor. If both
T1 ! E and T1 ! T2 coupling are allowed the geometric
factor becomes independent of n.

3.3 Quadrupole±quadrupole interaction

Six di�erent components contribute to the quadrupole±
quadrupole interaction between donor and acceptor ions
with k1 � k2 � 2 in Eq. (3), E$ E, E$ T2, E$ E � T2,
T2 $ T2, T2 $ E � T2, and E � T2 $ E � T2. The coe�-

icients t�4�ÿ�q1�q2� are given in Table 4 and the geometric

factors for the ®rst ten acceptor shells are given in

Table 5. We note that for the last case these factors are

again independent of n and are calculated to be 14/5.

Table 1. Coupling coe�cients for the dipole±dipole interaction in octahedral symmetry. t 2� �
� q1�q2j j are the coe�cients of C 2� �

q1�q2j j � C 2� �
ÿ q1�q2j j

� �
,

where C k� �
q are the standard Racah tensor operators
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0 0
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0
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3=2

p
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T1c ® T1a 0 0
��������
3=2

p
0 0

T1c ® T1b 0 ÿi
��������
3=2

p
0 0 0

T1c ® T1c )2 0 0 0 0

Table 2. Coupling coe�cients for the dipole±quadrupole interaction in octahedral symmetry. t 3� �
� q1�q2j j are the coe�cients of

C 3� �
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� �

, where t 3� �
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� q1�q2j j for quadrupole±dipole interaction
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Table 3. Geometric factors for dipole±quadrupole interaction among donor and acceptor ions. A typical set of spherical polar co±ordinates
for acceptor sites in shells n = 1±10 is given. The maximum number of acceptor sites, Nn, is calculated by the permutation of positive and
negative values of the corresponding Cartesian coordinates

n Rn/a0 Nn Hn=p Un=p T1 $ E T1 $ T2 T1 $ E � T2

1 0.707 12 0.5 0.25 0.3500 0.6500 1.000
2 1.000 6 0.5 0 0.6000 0.4000 1.000
3 1.225 24 0.3661 0.1476 0.3500 0.6500 1.000
4 1.414 12 0.5 0.25 0.3500 0.6500 1.000
5 1.581 24 0.5 0.1024 0.5100 0.4900 1.000
6 1.732 8 0.3041 0.25 0.2667 0.7333 1.000
7 1.871 48 0.3205 0.1024 0.3500 0.6500 1.000
8 2.000 6 0.5 0 0.6000 0.4000 1.000
9 2.121 12 0.5 0.25 0.3500 0.6500 1.000

24 0.4243 0.0780 0.4981 0.5019 1.000
10 2.236 24 0.3524 0 0.4400 0.5600 1.000
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4 Conclusions

The calculation of the geometric factors for multipole±
multipole interactions up to quadrupole±quadrupole has
been presented in detail. Numerical results up to n � 10
have been tabulated although only the lower values of
n are likely to be important in physical systems. The
geometric factors di�er from shell to shell except for
dipole±dipole interaction or when the separation be-
tween the emissive levels is small compared to kT .
Otherwise these geometric factors are su�ciently small
to require their inclusion in practical calculations of
excitation decay and luminescence e�ciency.
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Table 4. Coupling coe�cients for the quadrupole±quadrupole interaction in octahedral symmetry. t 4� �
� q1�q2j j are the coe�cients of
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Table 5. Geometric factors for quadrupole±quadrupole interaction among donor and acceptor ions. A typical set of spherical polar
coordinates for acceptor sites in shells n � 1±10 is given. The maximum number of acceptor sites, Nn, is calculated by the permutation of
positive and negative values of the corresponding Cartesian coordinates

N Rn/a0 Nn Hn=p Un=p E$ E E$ T2 E$ E � T2 T2 $ T2 T2 $ E � T2 E � T2 $ E � T2

1 0.707 12 0.5 0.25 0.8425 0.1875 1.030 1.583 1.770 2.800
2 1.000 6 0.5 0 1.480 0 1.480 1.320 1.320 2.800
3 1.225 24 0.3661 0.1476 0.0647 0.9653 1.030 0.8047 1.770 2.800
4 1.414 12 0.5 0.25 0.8425 0.1875 1.030 1.583 1.770 2.800
5 1.581 24 0.5 0.1024 0.5449 0.7731 1.318 0.7089 1.482 2.800
6 1.732 8 0.3041 0.25 0.4356 0.4444 0.8800 1.476 1.920 2.800
7 1.871 48 0.3205 0.1024 0.2915 0.7385 1.030 1.032 1.770 2.800
8 2.000 6 0.5 0 1.480 0 1.480 1.320 1.320 2.800
9 2.121 12 0.5 0.25 0.8425 0.1875 1.030 1.583 1.770 2.800

24 0.4243 0.0780 0.3657 0.9310 1.297 0.5723 1.503 2.800
10 2.236 24 0.3524 0 0.3664 0.8256 1.192 0.7824 1.608 2.800
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